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ABSTRACT

Motivation: The discovery of therapeutic targets is important for

cancer treatment. Although dozens of targets have been used in

cancer therapies, cancer remains a serious disease with a high mor-

tality rate. Owing to the expansion of cancer-related data, we now

have the opportunity to infer therapeutic targets using computational

biology methods.

Results: Here, we describe a method, termed anticancer activity en-

richment analysis, used to determine genes that could be used as

therapeutic targets. The results show that these genes have high like-

lihoods of being developed into clinical targets (460%). Combined

with gene expression data, we predicted 50 candidate targets for

lung cancer, of which 19 of the top 20 genes are targeted by approved

drugs or drugs used in clinical trials. A hexokinase family member,

hexokinase domain-containing protein 1 (HKDC1), is the only one of

the top 20 genes that has not been targeted by either an approved

drug or one being used in clinical trials. Further investigations indicate

that HKDC1 is a novel potential therapeutic target for lung cancer.

Conclusion: We developed a protocol to identify potential therapeutic

targets from heterogeneous data. We suggest that HKDC1 is a novel

potential therapeutic target for lung cancer.
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1 INTRODUCTION

In the past decade, targeted cancer therapies have improved
cancer treatment (Aggarwal, 2010; Sawyers, 2004). Dozens of

molecular targets have been used in cancer treatment, including

EGFR (Ciardiello and Tortora, 2008) and VEGFR (Tugues
et al., 2011). Although multiple drugs that selectively inhibit

these targets have been developed and are used in cancer treat-
ment, cancer is still a highly challenging disease (Siegel et al.,

2012). Therefore, discovering novel therapeutic targets is still
an important and challenging task for cancer treatment.

Several hallmarks of cancer have been defined and have helped
guide cancer therapy (Hainaut and Plymoth, 2013; Hanahan and

Weinberg, 2011). Of these hallmarks, uncontrolled growth is the
most critical for cancer propagation. Therefore, a cancer

therapeutic target should have the following two characteristics:

(i) the target should be essential for the growth of cancer cells

(Ngo et al., 2006; Sethi et al., 2012; Tiedemann et al., 2012), and

inhibition of the target should directly or indirectly suppress

cancer cell growth; and (ii) disturbing the target should have

minimal side effects in normal cells. It would be ‘perfect’ if the

target was not expressed in normal cells but highly expressed in

cancer cells.

In this study, we used a computational biology method to infer

potential therapeutic targets from heterogeneous data. We first

used our previously published method CDRUG (Li and Huang,

2012) to predict anticancer ligands in the CHEMBL database

(Gaulton et al., 2012). CDRUG is a web server (or method)

used to predict whether a chemical compound has anticancer

activity (Li and Huang, 2012). CHEMBL is a manually curated

chemical database of bioactive molecules that includes 49000

genes and 41 million compounds (Gaulton et al., 2012). We

then performed a hypergeometric test, termed anticancer activity

enrichment analysis (ACEA), to determine genes with significant

enrichment of anticancer ligands. Further investigation revealed

that these anticancer ligand-enriched genes have high potentials

to become clinical targets.
After overlapping these genes with expression data from lung

cancer tissues, we inferred 50 candidate therapeutic targets for

lung cancer. We further propose that HKDC1, one of these 50

genes, is a novel potential therapeutic target for lung cancer.

2 METHODS

To infer novel therapeutic targets, we first collected a large assortment of

datasets. These datasets included ligand–protein interaction data

(CHEMBL version 13) (Gaulton et al., 2012), the NCI-60 GI50 data

(Shoemaker, 2006), microarray-based NCI-60 cell line expression data

(Reinhold et al., 2012), RNA-seq-based expression data (Krupp et al.,

2012), RNA-seq-based expression data from lung cancer and adjacent

normal lung cells (Seo et al., 2012) and all known anticancer drugs,

including approved drugs and those still in clinical trial, from the

Thomson Reuters IntegritySM database. Detailed information concerning

these datasets can be found in Supplementary Table S1.

Next, we filtered the CHEMBL dataset based on a half maximal in-

hibitory concentration (IC50) of510mM or a Ki510mM and obtained

206 173 ligands that belong to 1776 human genes. The anticancer activ-

ities of all the ligands were predicted using CDRUG (Li and Huang,

2012). CDRUG is based on chemical fingerprint similarity and uses a

confidence level (P-value) to predict whether a compound has anticancer

activity. Thus, we predicted 4018 anticancer ligands using the default*To whom correspondence should be addressed.
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(P50.05) cutoff and 1071 anticancer ligands using the strict (P50.01)

CDRUG cutoff.

Then, a novel method, termed ACEA, was developed to measure

whether a gene is essential for the growth of cancer cells. ACEA is

based on the results of the CDRUG analysis (Li and Huang, 2012)

and uses a hypergeometric distribution to perform enrichment analysis.

The P-value of each gene can be calculated using the following equation:

p ¼ 1�
Xk�1

i¼0

m
i

� �
N�m
n�i

� �

N
n

� � ð1Þ

Here, N and n are the total number of ligands and the total number of

anticancer ligands in the filtered CHEMBL datasets, respectively; m and

k represent the number of ligands and the number of anticancer ligands in

a gene, respectively. Both n and k are calculated using CDRUG.

Two runs of ACEA were performed to obtain a list of anticancer

ligand-enriched genes. The first and second ACEA runs were performed

using the default (P50.05) and the strict (P50.01) CDRUG cutoffs,

respectively. For example, in the second ACEA run, N equaled

206 173, and n equaled 1071. When we used ACEA to examine EGFR,

we obtained 3688 ligands that interacted with EGFR, and 114 of these

3688 ligands were predicted to have anticancer activity. Therefore, m and

k were 3688 and 114, respectively. The P-value for EGFR was then

calculated to be 1.3� 10�51.

Because multiple tests (1776 genes) were performed, the Bonferroni

correction method was used to adjust the P-value determined by ACEA:

p adj ¼ p�Ng ð2Þ

Here, p is the P-value of ACEA, p_adj is the adjusted P-value of ACEA

and Ng is the number of genes in the filtered CHEMBL datasets. In the

EGFR study, Ng was 1776. Therefore, the second ACEA run had a p_adj

value of 2.2� 10�48. Only genes with p_adj50.05 in both the first and

second runs were retained. Using this process, we predicted 102 antic-

ancer ligand-enriched genes.

Next, to validate the predicted targets, we separated the known cancer

drug targets within the 1776 CHEMBL genes. We also obtained infor-

mation on all developed anticancer drugs from the Thomson Reuters

IntegritySM database; this included 743 anticancer compounds, of

which 274 have been approved for treatment. The remaining 469 com-

pounds are currently undergoing clinical trials (Supplementary Table S2).

Then, an all-against-all ligand similarity search was performed to map

these drugs to the CHEMBL datasets (Supplementary Table S3). Thus,

we obtained 239 approved cancer drug targets and 425 targets of trial

drugs from the 1776 CHEMBL genes (Supplementary Table S3). These

targets were then used to annotate the predicted targets.

Finally, to infer potential therapeutic targets for the treatment of lung

cancer, the expression profiles of 102 genes in lung cancer cells were

gathered from the collected RNA-Seq data (GSE40419, including 87

lung cancers and 77 adjacent normal tissues) (Seo et al., 2012). Of the

102 genes, 50 genes were significantly overexpressed in lung cancer. In

this process, genes with an RPKM (reads per kilo bases per million reads)

of53.0 were considered silent or expressed at low levels (Mortazavi et al.,

2008). The functional enrichment analysis of these 50 genes was per-

formed using the DAVID server (Huang et al., 2009).

3 RESULTS

3.1 Inferring potential therapeutic targets using ACEA

To infer potential therapeutic targets, we first filtered the

CHEMBL datasets and obtained 1776 genes that contain

206 173 ligands. Of these 1776 genes, �13% (239 of 1776) are

approved cancer drug targets, and 24% (425 of 1776) are tar-

geted by drugs currently in clinical trials (Supplementary Table

S3). Then, we predicted the anticancer activity of the 206 173

ligands using our previously published method (CDRUG),

which is based on chemical fingerprint similarity (Li and

Huang, 2012). Finally, the anticancer ligand enrichment

method, ACEA, was developed to determine genes enriched

for anticancer ligands.
After two runs of ACEA, we obtained 102 anticancer ligand-

enriched genes (Supplementary Table S4). Approximately 40%

of these genes (43 of 102) are approved therapeutic targets,

whereas 60% of these genes (67 of 102) are being targeted in

clinical trials (Fig. 1). The percentage of known cancer targets

(approved or clinically used targets) within these 102 genes is

approximately three times the percentage of therapeutic targets

found in the total list (1776 CHEMBL genes). In other words,

the known therapeutic targets are significantly enriched in the list

of 102 potential targets (P510�12, hypergeometric test) (Fig. 1).

These results indicated that the anticancer ligand-enriched genes

have high likelihoods of being developed into clinical targets

(460%). Thus, these 102 genes represent potential therapeutic

targets that should be validated further using other methods.

3.2 Inferring lung cancer therapeutic targets

Different types of cancer usually exhibit different characteristics,

including gene expression profiles; therefore, the predicted 102

potential targets should be further filtered for a given cancer

type. Using RNA-seq expression data from lung cancer tissues,

which includes 87 lung cancers and 77 adjacent normal tissues,

we extracted 50 targets that are overexpressed in lung carcinomas

(Supplementary Table S5). These targets are involved in cell

growth or survival-related biological processes (adjusted

P50.01), including histone deacetylation, oxidation–reduction,

cell division and the electron transport chain. Approximately 40

(19/50) or 60% (30/50) of these genes are targeted by approved

drugs or drugs that are currently being used in clinical trials,

respectively.

Fig. 1. Comparison of the percentages of known therapeutic targets be-

tween the total list (1776 CHEMBL genes) and the 102 potential targets

determined by ACEA. The percentages of approved targets in the total

list and in the ACEA list are 13.5 and 42.2%, respectively. The percent-

ages of the clinical trial targets in the total list and in the ACEA list are

23.9 and 65.7%, respectively. Known therapeutic targets, including both

approved and clinically used targets, were significantly enriched in the

ACEA target list (P510–12, hypergeometric test)
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In these 50 candidate lung cancer therapeutic targets, we

observed that 19 of the top 20 targets were already targeted by

drugs that have been approved or are in clinical trials (Table 1).

These results indicate that ACEA can precisely predict lung

cancer targets. Notably, HKDC1 is the only one of the top 20

targets that has not been targeted in clinical trials (Table 1). We

also observed eight targets (TUBB3, CDK1, HKDC1, CCNB2,

CCNB1, KIF11, TOP2A and HSD17B1) that are not expressed

or only expressed at low levels in normal lung cells

(RPKM53.0) (Supplementary Table S5). Except for HKDC1,

all of these genes are targeted by approved drugs or drugs cur-

rently in clinical trials (Supplementary Table S5). These results

suggest that HKDC1 is a novel potential therapeutic target for

lung cancer.

3.3 HKDC1 may be a novel therapeutic target for lung

cancer

To further validate whether HKDC1 could be used to target lung

cancer, we investigated the heterogeneous data related to

HKDC1. Twelve inhibitors of HKDC1 were screened in the

NCI-60 DTP project (Shoemaker, 2006) (Fig. 2A), and 8 of

the 12 inhibitors have GI50s (50% growth inhibition) of

510mM (Fig. 2B). All of these inhibitors had GI50s of530mM
(Fig. 2B). In addition, HKDC1 is expressed in nearly all the

NCI-60 cell lines (Fig. 2C), assuming that genes with a

GCRMA value43.32 are considered to be expressed (Siddiqui

et al., 2006). These observations suggest that inhibition of

HKDC1 could result in the suppression of cancer cell growth.

As mentioned earlier, a ‘perfect’ cancer therapeutic target

should not only be essential to cancer growth but also should

not be expressed in normal cells. Thus, we investigated the ex-

pression profiles of HKDC1 in normal tissues using data from

RNA-Seq Atlas (Krupp et al., 2012). The results show that

HKDC1 is either not expressed or expressed at low levels in

normal tissues, except for the kidney (RPKM¼ 4.82)

(Fig. 2D). As shown in Figure 2E, HKDC1 is not expressed or

is expressed at low levels in all of the normal lung tissue samples

(77 samples). In contrast, HKDC1 is expressed or highly ex-

pressed (RPKM43.0) in 60% (52/87) of the lung carcinoma

tissues (Fig. 2E). These results indicate that HKDC1 is a poten-

tial therapeutic target for lung cancer and could be applied to

�60% of lung cancer patients.

4 DISCUSSION

We have developed a computational biology method, ACEA, to

determine potential therapeutic target genes. Further analysis

shows that these genes have high likelihoods of being developed

into clinical targets. Combined with gene expression data, we

predicted 50 candidate targets for the treatment of lung cancer.

Further validation investigations suggest that HKDC1 is a novel

therapeutic target for lung cancer.
HKDC1 encodes the fifth mammalian hexokinase, which

phosphorylates hexoses (Wilson, 2003). Because phosphorylation

Table 1. Top 20 predicted lung cancer therapeutic targets

Rank Gene Approved

target?

Clinical trial

target?

Expressed in

normal lung

tissues?

Significance of

over-expression

in lung cancer

tissues

ACEA adjusted

P-value

1 DHFR ˇ ˇ ˇ *** 7.92E-125

2 TOP1 ˇ ˇ ˇ *** 2.61E-123

3 TUBB3 ˇ � *** 1.72E-94

4 HSP90AB1 ˇ ˇ ˇ *** 2.48E-81

5 PPIA ˇ ˇ ˇ *** 9.93E-74

6 HDAC1 ˇ ˇ ˇ *** 9.89E-71

7 HSP90AA1 ˇ ˇ ˇ ** 3.69E-65

8 HDAC2 ˇ ˇ ˇ *** 2.72E-64

9 HDAC3 ˇ ˇ ˇ *** 4.51E-63

10 HDAC6 ˇ ˇ ˇ *** 3.53E-61

11 HDAC8 ˇ ˇ ˇ *** 4.30E-60

12 EGFR ˇ ˇ ˇ ** 2.24E-48

13 PPIB ˇ ˇ ˇ *** 1.19E-39

14 HDAC10 ˇ ˇ ˇ ** 5.25E-34

15 CDK1 ˇ ˇ � *** 6.11E-21

16 HKDC1 � *** 1.11E-20

17 ERBB2 ˇ ˇ ˇ *** 9.21E-19

18 CCNB2 ˇ � *** 2.41E-16

19 CCNB1 ˇ � *** 2.54E-16

20 TUBA4A ˇ ˇ *** 2.02E-15

Note: Significances of overexpression of the lung cancer targets are cataloged as *P-value of 0.05–0.01, **P-value of 0.01–10�6 or ****P510�6, respectively. The targets that

are not expressed or only expressed at low levels in normal lung cells (RPKM53) are shown in bold (underlined). Note: only the adjusted P-values of the second ACEA run

are shown in this table.
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is the first step in glucose metabolism, hexokinases may play an

important role in regulating energy metabolism and thus regulat-

ing cell growth. Hexokinase type II (HK2) is a well-studied thera-

peutic target (Rempel et al., 1996; Tennant et al., 2010; Wolf

et al., 2011). Figure 3B shows that HK2 is overexpressed in

lung cancer tissues (fold change51, P¼ 0.03). However, only

HKDC1 showed a dramatic overexpression in cancer tissues

when compared with other hexokinases (fold change 42,

P510�10) (Fig. 3). This result suggested that HKDC1 might

play an important role in cancer growth that is different from

other hexokinases. Further experimental elucidation of the exact

role of HKDC1 in cancer growth will be important to its devel-

opment as a therapeutic target.

5 CONCLUSION

We developed the novel computational biology method ACEA

to determine which genes are significantly enriched for anticancer

ligands. We inferred 50 candidate targets for the treatment of

lung cancer, and we suggest that HKDC1 is a novel potential

therapeutic target for lung cancer.
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